1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
| __author__ = 'tsungyi_ysh'
import numpy as np import datetime import time from collections import defaultdict from . import mask as maskUtils import copy import json
class COCOeval: # Interface for evaluating detection on the Microsoft COCO dataset. # # The usage for CocoEval is as follows: # cocoGt=..., cocoDt=... # load dataset and results # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object # E.params.recThrs = ...; # set parameters as desired # E.evaluate(); # run per image evaluation # E.accumulate(); # accumulate per image results # E.summarize(); # display summary metrics of results # For example usage see evalDemo.m and http://mscoco.org/. # # The evaluation parameters are as follows (defaults in brackets): # imgIds - [all] N img ids to use for evaluation # catIds - [all] K cat ids to use for evaluation # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation # recThrs - [0:.01:1] R=101 recall thresholds for evaluation # areaRng - [...] A=4 object area ranges for evaluation # maxDets - [1 10 100] M=3 thresholds on max detections per image # iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints' # iouType replaced the now DEPRECATED useSegm parameter. # useCats - [1] if true use category labels for evaluation # Note: if useCats=0 category labels are ignored as in proposal scoring. # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. # # evaluate(): evaluates detections on every image and every category and # concats the results into the "evalImgs" with fields: # dtIds - [1xD] id for each of the D detections (dt) # gtIds - [1xG] id for each of the G ground truths (gt) # dtMatches - [TxD] matching gt id at each IoU or 0 # gtMatches - [TxG] matching dt id at each IoU or 0 # dtScores - [1xD] confidence of each dt # gtIgnore - [1xG] ignore flag for each gt # dtIgnore - [TxD] ignore flag for each dt at each IoU # # accumulate(): accumulates the per-image, per-category evaluation # results in "evalImgs" into the dictionary "eval" with fields: # params - parameters used for evaluation # date - date evaluation was performed # counts - [T,R,K,A,M] parameter dimensions (see above) # precision - [TxRxKxAxM] precision for every evaluation setting # recall - [TxKxAxM] max recall for every evaluation setting # Note: precision and recall==-1 for settings with no gt objects. # # See also coco, mask, pycocoDemo, pycocoEvalDemo # # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2015. # Licensed under the Simplified BSD License [see coco/license.txt] def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'): ''' Initialize CocoEval using coco APIs for gt and dt :param cocoGt: coco object with ground truth annotations :param cocoDt: coco object with detection results :return: None ''' if not iouType: print('iouType not specified. use default iouType segm') self.cocoGt = cocoGt # ground truth COCO API self.cocoDt = cocoDt # detections COCO API self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iouType=iouType) # parameters self._paramsEval = {} # parameters for evaluation self.stats = [] # result summarization self.ious = {} # ious between all gts and dts print('-----') if not cocoGt is None: self.params.imgIds = sorted(cocoGt.getImgIds()) self.params.catIds = sorted(cocoGt.getCatIds()) print('length of self.params.imgIds:',len(self.params.imgIds)) print('self.params.catIds:',self.params.catIds)
def _prepare(self): ''' Prepare ._gts and ._dts for evaluation based on params :return: None ''' def _toMask(anns, coco): # modify ann['segmentation'] by reference for ann in anns: rle = coco.annToRLE(ann) ann['segmentation'] = rle p = self.params
##通过查看保存的hk_noline检测的json,gts是单幅图像100个检测框,类别都是1(因为hk_noline只有一个类别) ##gt是一幅图像对应的gt框,这里的hk_noline是单类别,所以useCats是0,是1,保存的json内容都是一样的 ##具体的gts和dts的json格式是一个列表,每一个元素是一个字典,一个字典是一个检测框信息; ##进一步测试下多类的情况,不同的useCats效果?? if p.useCats: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) f_gts = open('./tmp1214/gts_catid.json','w+') json_gt = json.dumps(gts) f_gts.write(json_gt) f_gts.close()
f_dts = open('./tmp1214/dts_catid.json','w+') json_dt = json.dumps(dts) f_dts.write(json_dt) f_dts.close()
#print('gts:',gts) #print('dts:',dts) else: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
f_gts = open('./tmp1214/gts_no_catid.json','w+') json_gt = json.dumps(gts) f_gts.write(json_gt) f_gts.close()
f_dts = open('./tmp1214/dts_no_catid.json','w+') json_dt = json.dumps(dts) f_dts.write(json_dt) f_dts.close()
# convert ground truth to mask if iouType == 'segm' if p.iouType == 'segm': _toMask(gts, self.cocoGt) _toMask(dts, self.cocoDt) # set ignore flag for gt in gts: gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0 gt['ignore'] = 'iscrowd' in gt and gt['iscrowd'] if p.iouType == 'keypoints': gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore'] ##这种声明方式产生的self._gts是一个字典,每个元素是列表 ##这样得到的就是相同的img_id和类别id的信息,存放在一个列表中,即一张图像的同一个类别的框在一个列表中; self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation ## gts中一个gt格式:{"area": 735345, "iscrowd": 0, "image_id": 20190000781, "bbox": [225, 1052, 1257, 585], "category_id": 1, "id": 1063, "ignore": 0, "segmentation": []} for gt in gts: self._gts[gt['image_id'], gt['category_id']].append(gt) ## dts中一个dt格式:{"image_id": 20190000781, "category_id": 1, "bbox": [1584.88, 884.44, 152.43, 308.34], "score": 0.0, "segmentation": [[1584.88, 884.44, 1584.88, 1192.78, 1737.3100000000002, 1192.78, 1737.3100000000002, 884.44]], "area": 47000.2662, "id": 78100, "iscrowd": 0} for dt in dts: self._dts[dt['image_id'], dt['category_id']].append(dt) self.evalImgs = defaultdict(list) # per-image per-category evaluation results self.eval = {} # accumulated evaluation results
self.gt_id2img_id = {} for gt_i in gts: self.gt_id2img_id[gt_i['id']] = gt_i['image_id'] self.gt_imgid_cat_id = {} for gt_i in gts: if gt_i['image_id'] not in self.gt_imgid_cat_id.keys(): self.gt_imgid_cat_id[gt_i['image_id']] = {} for cat in self.params.catIds: self.gt_imgid_cat_id[gt_i['image_id']][cat] = [] self.gt_imgid_cat_id[gt_i['image_id']][gt_i['category_id']].append(gt_i['id']) #self.gt_imgid_cat_id[gt_i['image_id']][gt_i['category_id']].append(gt_i['id'])
def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' tic = time.time() print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if not p.useSegm is None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) ##唯一imgid if p.useCats: p.catIds = list(np.unique(p.catIds)) ##唯一gt类别id,不包括背景 p.maxDets = sorted(p.maxDets) self.params=p
self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks
##self.ious是一个字典,每一个元素是表示一张图中某一个类别的预测框(m个)和这个类别的gt(n个)的iou矩阵(m,n) self.ious = {(imgId, catId): computeIoU(imgId, catId) \ for imgId in p.imgIds for catId in catIds}
evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] ##self.evalImgs是列表,每一个元素是字典,存储的是单张图片,一种类别,特定areaRng下的预测框和gt的匹配结果(在不同的阈值下) self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] self._paramsEval = copy.deepcopy(self.params) toc = time.time() print('DONE (t={:0.2f}s).'.format(toc-tic))
def computeIoU(self, imgId, catId): p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return [] ##inds是score从大到小排列的索引 inds = np.argsort([-d['score'] for d in dt], kind='mergesort') ##将此处的dt(一张图片一个类别的所有100个检测框(dt大于100个检测框的,按置信度取前100个(100个由p.maxDets设定))按置信度从大到小排列) ##注意是一张图片一种类别的预测框不超过p.maxDets[-1]个,而不是一张图片的预测框不超过这么多,除非设置忽视类别,那就等价于一张图片的总的预测框不多于p.maxDets[-1] dt = [dt[i] for i in inds] if len(dt) > p.maxDets[-1]: dt=dt[0:p.maxDets[-1]]
if p.iouType == 'segm': g = [g['segmentation'] for g in gt] d = [d['segmentation'] for d in dt] elif p.iouType == 'bbox': g = [g['bbox'] for g in gt] d = [d['bbox'] for d in dt] else: raise Exception('unknown iouType for iou computation') ##gt和dt是一张图片的一种类别的所有框信息;其中dt中只取p.maxDets[-1]个检测框,按置信度从大到小排序; ##g和d是从gt和dt中获取的segmentation信息(分割任务),检测任务取得是bbox信息; # compute iou between each dt and gt region iscrowd = [int(o['iscrowd']) for o in gt] ious = maskUtils.iou(d,g,iscrowd) ##ious是(m,n),m是d的个数,即模型的预测检测框个数,n是g的框个数 return ious
def computeOks(self, imgId, catId): p = self.params # dimention here should be Nxm gts = self._gts[imgId, catId] dts = self._dts[imgId, catId] inds = np.argsort([-d['score'] for d in dts], kind='mergesort') dts = [dts[i] for i in inds] if len(dts) > p.maxDets[-1]: dts = dts[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(gts) == 0 or len(dts) == 0: return [] ious = np.zeros((len(dts), len(gts))) sigmas = p.kpt_oks_sigmas vars = (sigmas * 2)**2 k = len(sigmas) # compute oks between each detection and ground truth object for j, gt in enumerate(gts): # create bounds for ignore regions(double the gt bbox) g = np.array(gt['keypoints']) xg = g[0::3]; yg = g[1::3]; vg = g[2::3] k1 = np.count_nonzero(vg > 0) bb = gt['bbox'] x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 for i, dt in enumerate(dts): d = np.array(dt['keypoints']) xd = d[0::3]; yd = d[1::3] if k1>0: # measure the per-keypoint distance if keypoints visible dx = xd - xg dy = yd - yg else: # measure minimum distance to keypoints in (x0,y0) & (x1,y1) z = np.zeros((k)) dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0) dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0) e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2 if k1 > 0: e=e[vg > 0] ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] return ious
def evaluateImg(self, imgId, catId, aRng, maxDet): ''' perform evaluation for single category and image :return: dict (single image results) ''' p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return None
for g in gt: if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]): g['_ignore'] = 1 else: g['_ignore'] = 0
# sort dt highest score first, sort gt ignore last gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') gt = [gt[i] for i in gtind] dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in dtind[0:maxDet]]
iscrowd = [int(o['iscrowd']) for o in gt]
# load computed ious ##两种情况,一张图片中,一种类别的gt存在,则 ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
T = len(p.iouThrs) G = len(gt) D = len(dt) gtm = np.zeros((T,G)) ##存储的是每一个iou阈值、p.maxDet[-1]下的gt能够匹配到的最大iou对应的模型预测框的id,匹配不到的值是0; dtm = np.zeros((T,D)) ##存储的是每一个iou阈值下的模型预测框匹配到的gt的id,匹配不到的是0; gtIg = np.array([g['_ignore'] for g in gt]) dtIg = np.zeros((T,D)) ##表示每一个阈值下的预测框匹配到的gt是否需要ignore
##dt已经按照置信度排过序,gt已经按照ignore排过位置,非ignore在前,ignore在后面 ##下面的if里面实现的功能是每一个iou阈值下,遍历预测框(预测框已经按置信度从大到小排序),一个预测框和gt匹配上,则 ##另一个预测框不能再通过iou和这个gt进行匹配 if not len(ious)==0: for tind, t in enumerate(p.iouThrs): for dind, d in enumerate(dt): # information about best match so far (m=-1 -> unmatched) iou = min([t,1-1e-10]) # # 如果m= -1 代表这个dt没有得到匹配 m代表dt匹配的最好的gt的索引下标 m = -1 for gind, g in enumerate(gt): # if this gt already matched, and not a crowd, continue if gtm[tind,gind]>0 and not iscrowd[gind]: continue # if dt matched to reg gt, and on ignore gt, stop if m>-1 and gtIg[m]==0 and gtIg[gind]==1: break # continue to next gt unless better match made if ious[dind,gind] < iou: continue # if match successful and best so far, store appropriately iou=ious[dind,gind] m=gind # if match made store id of match for both dt and gt if m ==-1: continue dtIg[tind,dind] = gtIg[m] ##对应的能匹配上gt的预测框是否ignore dtm[tind,dind] = gt[m]['id'] ##dt匹配上的gt的id gtm[tind,m] = d['id'] ##gt中的框匹配上的预测框的id # set unmatched detections outside of area range to ignore ##将dtm中没有匹配到gt的预测框,同时预测框的area在指定的aRng范围外,则设置对应的预测框为ignore a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt))) dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0))) # store results for given image and category return { 'image_id': imgId, 'category_id': catId, 'aRng': aRng, ##aRng范围外的gt和未匹配到gt的预测框但在aRng范围外都是ignore,匹配到gt的预测框在aRng范围外正常计算,不ignore 'maxDet': maxDet, ##这里是p.maxDets[-1] 'dtIds': [d['id'] for d in dt], ##已经排过序的预测框id 'gtIds': [g['id'] for g in gt], 'dtMatches': dtm, ##(T,D) 其中D是已经按置信度排除的bbox 'gtMatches': gtm, ##(T,G) G是按照aRng等信息排序的不ignore在前,ignore在后的gt 'dtScores': [d['score'] for d in dt], ##已经排过序的score 'gtIgnore': gtIg, ##G指的是单张图片特定aRng的gt是否ignore信息 'dtIgnore': dtIg, ##(T,D) }
def accumulate(self, p = None): ''' Accumulate per image evaluation results and store the result in self.eval :param p: input params for evaluation :return: None ''' print('Accumulating evaluation results...') tic = time.time() if not self.evalImgs: print('Please run evaluate() first') # allows input customized parameters if p is None: p = self.params p.catIds = p.catIds if p.useCats == 1 else [-1] T = len(p.iouThrs) ##设置的iou阈值的个数 R = len(p.recThrs) ##设置的召回的recThrs阈值的个数 K = len(p.catIds) if p.useCats else 1 A = len(p.areaRng) M = len(p.maxDets) G_num = 7800 ##设置的该评估用的数据集的gt总数,可以事先通过cvat查看标注的bbox个数,或者自己评估性的设置一个数 precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories ##这个是存储不同的rec值下的p值,相当于存储了pr曲线的采样点 recall = -np.ones((T,K,A,M)) precision_s = -np.ones((T,K,A,M)) ##真实的精确率值 scores = -np.ones((T,R,K,A,M)) DTMatch = -np.ones((T,K,A,G_num,M))
# create dictionary for future indexing _pe = self._paramsEval catIds = _pe.catIds if _pe.useCats else [-1] setK = set(catIds) setA = set(map(tuple, _pe.areaRng)) setM = set(_pe.maxDets) setI = set(_pe.imgIds) # get inds to evaluate k_list = [n for n, k in enumerate(p.catIds) if k in setK] m_list = [m for n, m in enumerate(p.maxDets) if m in setM] a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] i_list = [n for n, i in enumerate(p.imgIds) if i in setI] I0 = len(_pe.imgIds) A0 = len(_pe.areaRng)
##根据self.evalImgs的存储形式,遍历时最里层是img_id、次外层是aRng、最外层是类别id ''' self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] ''' # retrieve E at each category, area range, and max number of detections for k, k0 in enumerate(k_list): ##类别的索引下标遍历 Nk = k0*A0*I0 for a, a0 in enumerate(a_list): ##aRng的遍历 Na = a0*I0 for m, maxDet in enumerate(m_list): E = [self.evalImgs[Nk + Na + i] for i in i_list] E = [e for e in E if not e is None] if len(E) == 0: continue ##特定类别、特定aRng的所有图片中每一张图片的maxDet个预测框 dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
# different sorting method generates slightly different results. # mergesort is used to be consistent as Matlab implementation. inds = np.argsort(-dtScores, kind='mergesort') ##是将特定类别,特定aRng的所有图片的预测框 # (每张图片特定类别、aRng取置信度从大到小的maxDet个框) #的置信度拉成一位数组,然后再次从大到小排列; dtScoresSorted = dtScores[inds] ##dtm、dtIg维度是(T,maxDet个数*图片个数) dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds] dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds] gtIg = np.concatenate([e['gtIgnore'] for e in E]) ##gtIg维度是(图片个数,G) npig = np.count_nonzero(gtIg==0 ) ##gt不ignore的个数 if npig == 0: continue
##dtm、dtIg维度是(T,maxDet个数*图片个数) tps = np.logical_and( dtm, np.logical_not(dtIg) ) fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
###GT是特定类别、特定aRng、maxDet下所有图片的gt能被预测到的情况 #GT = [self.evalImgs[Nk + Na + i] for i in i_list] gtmatch_id = tps * dtm ##(T,图片个数*maxDet) indice_gt = [np.where(i> 0)for i in gtmatch_id] unique_id = np.array([np.unique(i[indice_gt[p]]) for p,i in enumerate(gtmatch_id)]) #(T,d(不同的iou下,maxDet下的预测框能检测到的gt,所以维度d维度不一样)) #gtmatch = np.concatenate([e['gtMatches'] for e in GT], axis=1) ##(T,图片个数*G) #gt_total_num_k_a = gtmatch.shape[1] #(T,K,A,G_num,M) for j,id in enumerate(unique_id): gt_total_num_k_a = len(id) DTMatch[j,k,a,:gt_total_num_k_a, m] = id ##存储的是预测框能匹配上的gt的id
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) nd = len(tp) rc = tp / npig pr = tp / (fp+tp+np.spacing(1)) q = np.zeros((R,)) ##特定召回率下的precision值(pr曲线) ss = np.zeros((R,)) ##特定召回率下的对应的bbox的置信度
if nd: recall[t,k,a,m] = rc[-1] precision_s[t,k,a,m] = pr[-1] else: recall[t,k,a,m] = 0 precision_s[t,k,a,m] = 0
# numpy is slow without cython optimization for accessing elements # use python array gets significant speed improvement pr = pr.tolist(); q = q.tolist()
for i in range(nd-1, 0, -1): if pr[i] > pr[i-1]: pr[i-1] = pr[i]
##这里调用的np.searchsorted表示p.recThrs中每一个值能插入到rc中的位置索引,其中rc必须是升序 inds = np.searchsorted(rc, p.recThrs, side='left') try: for ri, pi in enumerate(inds): q[ri] = pr[pi] ss[ri] = dtScoresSorted[pi] except: pass precision[t,:,k,a,m] = np.array(q) scores[t,:,k,a,m] = np.array(ss) self.eval = { 'params': p, 'counts': [T, R, K, A, M], 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'precision': precision, ##(T,R,K,A,M) 'recall': recall, ##(T,K,A,M) 'precision_s': precision_s, 'scores': scores, ##(T,R,K,A,M) 'DTMatch': DTMatch, } toc = time.time() print('DONE (t={:0.2f}s).'.format( toc-tic))
def get_good_predict_data(self): ''' 该函数主要用于得到评估数据集中gt成功预测的图片,相反可以得到gt预测不好的图片用于离线困难数据挑选; ''' def get_imgid_excellent_predict(save_path, iouThr, areaRng, maxDets, catId): p = self.params ##(T,K,A,G_num,M) DTMatch = self.eval['DTMatch'] aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] cind = [i for i, cat in enumerate(p.catIds) if cat in catId] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] DTMatch = DTMatch[t] ##应该分类别计算,不然统一取unique的话,一张图中只要有一种类别的一个gt被检测出来,这张图片后续就会认为是预测较好 ##的样本,但是该图片中同一种类的其他gt或者其他类的gt可能完全没检出,因此需要分类别计算 ##iou阈值混在一起没问题,或者取特定的iou阈值就可以了 ##其实也就是将gt的id和这里的np.unique(DTMatch[:,cind,aind,:,mind])取差集就知道漏检情况了,因为id是指的gt的框的索引 gt_imgid_cat_id = copy.deepcopy(self.gt_imgid_cat_id) DTMatch = DTMatch[:,cind,aind,:,mind] #print(DTMatch.shape) for i,cat in enumerate(catId): DTMatch_catid = np.unique(DTMatch[:,i,:]) DTMatch_catid = np.delete(DTMatch_catid,0) for j in DTMatch_catid: image_id = self.gt_id2img_id[j] gt_imgid_cat_id[image_id][cat].remove(j) null_leak_det = [] ##存储完全检测出gt bbox的图片id for image_id_i in gt_imgid_cat_id.keys(): num_empty = 0 for catId_i in catId: #for catId_i in gt_imgid_cat_id[image_id_i]: if len(gt_imgid_cat_id[image_id_i][catId_i]) ==0: num_empty += 1 #RuntimeError: dictionary changed size during iteration #gt_imgid_cat_id[image_id_i].pop(catId_i) #if num_empty == len(self.params.catIds): if num_empty == len(catId): null_leak_det.append(image_id_i)
det_gt = np.array([ self.cocoGt.loadImgs(ids=[i])[0]['file_name'] for i in null_leak_det]) det_gt = np.unique(det_gt) np.savetxt(save_path, det_gt, fmt='%s', delimiter=',')
#json_str = json.dumps(gt_imgid_cat_id) for img_id_i in null_leak_det: gt_imgid_cat_id.pop(img_id_i)
#print('length of gt_imgid_cat_id={}, none_leak_det={}, imgIds={}'.format(len(gt_imgid_cat_id.keys()),len(null_leak_det),len(self.params.imgIds))) json_str = repr(gt_imgid_cat_id) with open(save_path.replace('.txt','.json').replace('good','leak_det'), 'w') as json_file: json_file.write(json_str) leak_det_gt = gt_imgid_cat_id.keys() leak_det_gt = np.array([ self.cocoGt.loadImgs(ids=[i])[0]['file_name'] for i in leak_det_gt]) leak_det_gt = np.unique(leak_det_gt) np.savetxt(save_path.replace('good','leak_det'), leak_det_gt, fmt='%s', delimiter=',') # DTMatch = np.unique(DTMatch[:,cind,aind,:,mind]) # DTMatch = np.delete(DTMatch,0) # ###检测框对应的gt id和真实的gt的id的差集就是未检测出的gt的框的id # #DTMatch.tolist().remove(-1.0) # #print(DTMatch) # det_gt = np.array([ self.cocoGt.loadImgs(ids=[self.gt_id2img_id[i]])[0]['file_name'] for i in DTMatch]) # det_gt = np.unique(det_gt)
# # with open(save_path,'w+') as file_object: # # json.dump(DTMatch,file_object) # np.savetxt(save_path, det_gt, fmt='%s', delimiter=',') # # f = open(save_path,'w+') # # for i in DTMatch: # # f.write(i) # # f.write('\n') # # f.close() #print('save iou={}| areaRng={}| maxDets={}| catId={} to {}'.format(iouThr, areaRng, maxDets, catId, save_path))
save_path = r'./good_predict.txt' get_imgid_excellent_predict(save_path, iouThr=.5, areaRng='all', maxDets=self.params.maxDets[0], catId=[self.params.catIds[2]])
def summarize(self): ''' Compute and display summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting ''' def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 , catId=self.params.catIds): ''' precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories ##这个是存储不同的rec值下的p值,相当于存储了pr曲线的采样点 recall = -np.ones((T,K,A,M)) precision_s = -np.ones((T,K,A,M)) ##真实的精确率值 ''' p = self.params iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' # titleStr = 'Average Precision' if ap == 1 else 'Average Recall' # typeStr = '(AP)' if ap==1 else '(AR)' #titleStr = 'Average Precision' if ap == 1 else 'Average Recall' #typeStr = '(AP)' if ap==1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
cind = [i for i, cat in enumerate(p.catIds) if cat in catId]
if ap == 1: titleStr = 'Average P-R curve Area' typeStr = '(mAP)' # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] #s = s[:,:,:,aind,mind] s = s[:,:,cind,aind,mind] elif ap == 0: titleStr = 'Average Recall' typeStr = '(AR)' # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] #s = s[:,:,aind,mind] s = s[:,cind,aind,mind]
else: titleStr = 'Average Precision' typeStr = '(AP)' # dimension of precision: [TxKxAxM] s = self.eval['precision_s'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] #s = s[:,:,aind,mind] s = s[:,cind,aind,mind]
if len(s[s>-1])==0: mean_s = -1 else: mean_s = np.mean(s[s>-1]) print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) return mean_s
def _summarizeDets(): ''' Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.902 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.985 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.975 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.902 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.687 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.932 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.932 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.932
'''
''' Average P-R curve Area (mAP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.902 Average P-R curve Area (mAP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.985 Average P-R curve Area (mAP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.975 Average P-R curve Area (mAP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average P-R curve Area (mAP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average P-R curve Area (mAP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.902 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.687 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.932 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.932 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.932 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.936 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.127 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.013 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 1 ] = 0.988 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 10 ] = 0.136 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 1 ] = 0.981 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 10 ] = 0.135
''' #stats = np.zeros((12,)) stats = np.zeros((31,)) stats[0] = _summarize(1) stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) stats[6] = _summarize(0, iouThr=.5, maxDets=self.params.maxDets[1]) stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) #stats[8] = _summarize(0, iouThr=.5, maxDets=self.params.maxDets[0]) stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
stats[12] = _summarize(2, maxDets=self.params.maxDets[0]) stats[13] = _summarize(2, maxDets=self.params.maxDets[1]) stats[14] = _summarize(2, maxDets=self.params.maxDets[2]) stats[15] = _summarize(2, iouThr=.5, maxDets=self.params.maxDets[0]) stats[16] = _summarize(2, iouThr=.5, maxDets=self.params.maxDets[1]) stats[17] = _summarize(2, iouThr=.75, maxDets=self.params.maxDets[0]) stats[18] = _summarize(2, iouThr=.75, maxDets=self.params.maxDets[1])
stats[19] = _summarize(2, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[0]]) stats[20] = _summarize(2, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[1]]) stats[21] = _summarize(2, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[2]])
stats[22] = _summarize(0, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[0]]) stats[23] = _summarize(0, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[1]]) stats[24] = _summarize(0, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[2]])
stats[25] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[0]]) stats[26] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[1]]) stats[27] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[1], catId=[self.params.catIds[2]])
stats[28] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2], catId=[self.params.catIds[2]]) stats[29] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2], catId=[self.params.catIds[2]]) stats[30] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2], catId=[self.params.catIds[2]])
# stats = np.zeros((2,)) # stats[0] = _summarize(0, iouThr=.8, maxDets=self.params.maxDets[0]) # stats[1] = _summarize(2, iouThr=.8, maxDets=self.params.maxDets[0]) return stats
def _summarizeKps(): stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.5) stats[2] = _summarize(1, maxDets=20, iouThr=.75) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.5) stats[7] = _summarize(0, maxDets=20, iouThr=.75) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats if not self.eval: raise Exception('Please run accumulate() first') iouType = self.params.iouType if iouType == 'segm' or iouType == 'bbox': summarize = _summarizeDets elif iouType == 'keypoints': summarize = _summarizeKps self.stats = summarize()
def __str__(self): self.summarize()
class Params: ''' Params for coco evaluation api ''' def setDetParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value #array([0.5 , 0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95]) self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [1, 10, 100] self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'small', 'medium', 'large'] self.useCats = 1
def setKpParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
def __init__(self, iouType='segm'): if iouType == 'segm' or iouType == 'bbox': self.setDetParams() elif iouType == 'keypoints': self.setKpParams() else: raise Exception('iouType not supported') self.iouType = iouType # useSegm is deprecated self.useSegm = None
|